What do we currently know?

...about surface water quality... & land use... in the Hurunui catchment

Gathering current knowledge with the Science Stakeholder Group: 8 March 2017, WAIPARA

Purpose

- Share what we (the whole SSG) know
- Find, & plan to fill, knowledge gaps
- Reach a level of comfort with messages

...to inform ZC & wider community (public meeting at Waikari Hall, Monday 20 March at 7.30pm)

Outline topics for today

- 1. Surface water quality / ecology (60 mins)
- 2. Current land use & N loads (20 mins)
- 3. Next steps...

Surface Water Quality in the Hurunui River Catchment

Kimberley Dynes – Ecology Scientist
Adrian Meredith – Principal Surface Water and Ecology Scientist
Environment Canterbury

Topics to cover

- Key Messages
- · Water quality monitoring programmes
- · Aquatic ecosystem health
- Periphyton indicators
 - Total periphyton and cyanobacteria
- Nutrients
 - Nutrient impacts on periphyton
 - Toxicity
- Faecal indicator bacteria
 - E.coli for Wadeable and Swimmable
- · Additional monitoring

Key messages

- Cyanobacteria is an issue in the lower reaches of the Hurunui River – Didymo appears to be the dominant algae in the upper reaches
- Nitrate from intensive land use in the Amuri Basin is an important source to the mainstem, with increasing concentrations in some tributary sites and for SH1
- Ecological health occasionally indicates degradation for some sites
- Swimmibility is an issue for the tributary streams and at SH1 much of the time
- Need to manage N, P, microbial contamination and sediment (and flow) to achieve freshwater objectives.

Water Quality in Rivers and Streams

- 3 different monitoring programmes
 - Aquatic Ecosystem Health assesses the aquatic bugs (macroinvertebrates) living in the water over the summer months
 - Water quality monitoring for physical and chemical water quality
 - Nutrients, bacteria, water clarity, periphyton (algae)
 - Recreational Water Quality

Aquatic ecosystem health

Monitoring of aquatic macroinvertebrates (bugs >0.5 mm) species as an indicator of overall water quality and stream habitat

Aquatic ecosystem health

Key Messages: Aquatic Ecosystem Health

- 2 sites always meet plan objectives, 4 sites sometimes meet plan objectives,
- School Stream at SH7 does not meet the minimum plan objective
 - Stagnant flow, choked with macrophytes/floating algae,

Routine water quality in streams and rivers

Periphyton Monitoring

- Total Biomass
- Total cover %
- Filamentous algae
- Cyanobacteria mats
- Didymo

Total Periphyton - biomass

- Measure of total periphyton community for a given area
- NPS-FM National Objectives Framework Benthic Periphyton – chlorophyll 'a'
 - Only have suitable data at 2 sites: Hurunui SH1 + Pahau River
- Pahau River at Top Pahau Rd generally good
- Hurunui River at SH1 variable and not suitable all years

Benthic Periphyton	No. samples	National Bo	ttom line			В		A		
SQ30064	Hurunui Rive	r SH1								
3 yr	36	4	11%	5	14%	2	6%	22	61%	
2011-12	12	3	25%	2	17%	0	0%	5	42%	
2012-13	12	1	8%	1	8%	1	8%	8	67%	
2013-14	12	0	0%	2	17%	1	8%	9	75%	
SQ00540	Pahau River	at Top Pahau	Road							
3 yr	36	0	0%	0	0%	1	3%	34	94%	
2011-12	12	0	0%	0	0%	0	0%	12	100%	
2012-13	12	0	0%	0	0%	1	8%	10		mer
2013-14	12	0	0%	0	0%	0	0%	12	100%	ury
								кеді	onal C	ounc

7

Periphyton Monitoring

- Total Biomass
- Total cover %
- Filamentous algae
- Cyanobacteria mats
- Didymo

Filamentous Algae periphyton cover

- Green filamentous algae for hill-fed trib and Hurunui mainstem sites monitored in the catchment achieves plan objectives
- Green filamentous algae does not appear to be the dominant algae in the Hurunui River catchment

Cyanobacteria mat cover in rivers

- · Most problematic in Hurunui River
- Public Health Warnings often issued at SH7 & SH1 due to moderate-high cover, and detaching mats

Cyanobacteria mats in rivers

- Public health warnings have been issued for the Hurunui River at SH7 and SH1
- Hurunui SH7 cyanobacteria is generally assessed for public health notification upstream of a swimming site – last few years this has been in a side braid
- Cyanobacteria is now the dominant periphyton in the lower Hurunui River
- Flow (freshes/floods) = greatest influence limiting growths, followed by nutrient

Didymo cover in rivers

- Didymo is the dominant periphyton in the upper catchment (upstream of SH7) (Kilroy 2016)
- Didymo appears to dominate under low nutrient conditions

Nutrients and their impact on water quality

- Nutrients
 - At <u>low</u> concentrations Beneficial in encouraging thin growths of algae in rivers (food for aquatic life)
 - At <u>higher</u> concentrations encourage conspicuous nuisance growths of algae (periphyton)
 - At <u>very high</u> concentrations some nutrients (Nitrate-N, Ammonium-N) can be toxic
- Different guideline address different effects

Recap of previous presentations - Groundwater

- increasing nitrate trends with intensification across the Amuri Basin
- phosphorus elevated in some shallow GW - may be related to landuse

Recap of previous presentations – Periphyton and Cyanobacteria

- River flow has greatest influence on periphyton growth, followed by nutrients when flow is optimal
- different periphyton appear to have different nutrient requirements
 - cyanobacteria = potentially low P in water
 - didymo = low nutrient requirements
 - long filament = elevated N & P
 - Need to manage both N & P to meet requirements of different periphyton

Recap of previous presentations – Periphyton and Cyanobacteria

- In the Hurunui River:
 - Shift from didymo dominated upstream to cyanobacteria downstream
 - Mirrored by nutrient shift from low N & P conc. upstream (suitable for didymo as low nutrient requirements) to higher N but P limited downstream (suitable for cyanobacteria as may utilise alternative P source e.g sediment)

Periphyton cover on the river bed (visual estimates)

 Increase in fine sediment downstream, with increasing P content in sediment downstream (correlated to greatest cyanobacteria cover)

Nutrient impacts on periphyton – Nitrogen

- Increase in N from upper Hurunui (Mandamus/SH7) to lower (SH1/SB)
 - indicating moderate-high risk of nuisance periphyton blooms in lower river
- Long term trends = decreasing trend at Mandamus, Increasing trend at SH1

Nutrient impacts on periphyton – Nitrogen

- Increase in N from upper Pahau (Downs) to lower Pahau (above Hurunui)
- Nitrogen elevated in tributary streams (Amuri Basin)
 - Greatest in spring-fed tributaries e.g Pahau Drain, St Leonards Drain
- Increasing trends for Waitohi and St Leonards Drain, decreasing for Dry (irrigation race water)

Nutrient impacts on periphyton - Phosphorus

- Tributaries show higher P moderate increase in risk of nuisance growths
- Decreasing trends for mainstem, Waitohi, Pahau, and Dry Stream
- Mainstem Hurunui shows P-limitation does not account for sediment P sources i.e for *Phormidium* growth

Nutrient impacts on periphyton - Phosphorus

- Tributaries show higher P moderate increase in risk of nuisance growths
- Mainstem Hurunui shows P can often be limiting does not account for sediment P sources i.e for *Phormidium* growth
- · Decreasing trends for mainstem, Waitohi, Pahau, and Dry Stream

Key Messages: Nutrients and periphyton

Hurunui River mainstem:

- Upper river dominated by didymo, with N & P co-limitation
- Lower river dominated by cyanobacteria. Increasing N concentrations, but can be limited by P concentrations
 - Kilroy (2016) indicates increased fine sediment and associated P may be a source supporting cyanobacteria. Environment Canterbury

Key Messages: Nutrients and periphyton

Amuri Basin tributaries:

- Elevated nutrient concentrations sufficient for periphyton growth
 - Nitrogen concentrations increasing in some tributaries
- Tributaries do not appear to be susceptible to nuisance growths
- -Elevated nutrient concentrations important as a source to the mainstem Environment Canterbury

Nutrient toxicity – National Criteria

- Ammonia and Nitrate toxicity assessed compared to the NPS-FM National Objectives Framework
- All river sites monitored classed in the A and B bands of the NPS-FM for <u>ammonia</u> – indicates low ammonia toxicity risk

Nitrate toxicity - National Criteria

- Median concentrations indicate some toxic effects on species for spring-fed streams i.e Pahau Drain and St Leonards Drain
- · Do not meet the HWRRP objective for these sites

Nitrate toxicity - National Criteria

- 95th percentile concentrations indicate some toxic effects on species for spring-fed streams i.e Pahau Drain and St Leonards Drain, and Dry Stream
- Do not meet the HWRRP objective for these sites

Nitrate toxicity - National Criteria

- Spring-fed streams Nitrate concentrations may have potential toxicity effects (on 20% of aquatic species (i.e sensitive species)).
- Increasing trends for Waitohi and St Leonards Drain, decreasing trend for Dry Stream (irrigation race water)

Key Messages: Nutrient Toxicity

- Low risk of toxic effects for the mainstem of the Hurunui River
- Hill and spring-fed tributaries indicate potential species loss or growth effects due to elevated nitrate concentrations
- Does not take into consideration the lower nutrient thresholds for nuisance periphyton

Wadeable and Swimmable

- <u>Wadeable</u> = People are exposed to a high risk of infection (>5% risk) from contact with water during activities with partial immersion and some ingestion of water
 - Annual median must not exceed 1000 MPN/100mL
- <u>Swimmable</u> = moderate risk of infection (< 5% risk) from activities likely to involve full immersion.
 - Annual <u>95th percentile</u> must not exceed 540 MPN/100mL

From NPS-FM (2014)

Wadeable and Swimmable

- <u>Wadeable</u>: All sites monitored classed in the A and B bands of the NPS-FM for 2011-16 – indicates suitable for wading activities
- · Swimmable:
 - 2013-14 5 of 6 sites do not meet minimum requirements for Swimmibility
 - Tributary streams frequently do not meet minimum requirements for swimmability
 - Hurunui River at SH1 did not meet minimum requirements for past 4 years – reflected by a poor suitability for recreation grading

Key Messages: Wadeable/Swimmable

- All sites meet Wadeable bottom lines
- Amuri Basin tributary streams and Hurunui River at SH1 generally do not meet minimum acceptable state for Swimmibility
- Suitability for recreation monitoring only carried out for Hurunui River at SH7 and SH1 = recent improvement to Fair grading, but have both been previously considered unsuitable for recreation

Summary - Water quality in rivers and streams

	Mainstem - below Mandamus	Tributary Streams	
Aquatic Ecological Health	(2)	8	
Cyanobacteria	8		
Filamentous Algae	<u> </u>	©	
Nitrogen	8	8	
Phosphorus	©	<u> </u>	
Swimmibility	8	8	nvironment anterbury gional Council nihera Taiao ki Waitaha

Summary - Water quality in rivers and streams

- Cyanobacteria is an issue in the lower reaches of the Hurunui River – Didymo appears to be the dominant algae in the upper reaches
- Nitrate from intensive land use in the Amuri Basin is an important source to the mainstem, with increasing concentrations in some tributary sites and for SH1
- Ecological health occasionally indicates degradation for some sites
- Swimmibility is an issue for the tributary streams and at SH1 much of the time

Summary - Water quality in rivers and streams

 Need to manage N, P, microbial contamination and sediment (and flow) to achieve freshwater objectives

Additional Monitoring Data

Additional monitoring data required or underway:

<u>Plan Monitoring sites</u> – 3 additional tributary sites being monitored for tributary nutrient load determination (plan requirement)

Current Gap Filling and Plan Effectiveness monitoring sites

<insert surface water slides here>

Ned Norton – Technical Lead Ognjen Mojsilovic – Land Resources Scientist

How do we estimate current land use patterns at regional scale?

- 1. Use following databases in GIS...
- AgriBase (AsureQuality 2016)
- Farm Dairy Effluent consents (ECan 2016)
- Valuation roll (ECan 2016)
- Land Cover Database (2012)
- Irrigation (Aqualinc 2015)
- Select LINZ Topo 50 layers (LINZ 2016)

Draft method to be written up & made available

2. Match agricultural enterprises to base farm classes established by the MGM project

(Matrix of Good Management)

Draft result: GIS layer 'current' landuse

How do we estimate N loss at regional scale?

- 1. Use estimated current land use GIS layer
- 2. Use soil layer (MGM classes)
- 3. Use climate (rainfall) layer (MGM classes)
- Use N loss estimates (kg/ha/yr) for different farm classes on different soils & rainfall – from the MGM project
- 5. Use GIS tool to sum up the loads

Regional Council Kaunihera Taiao ki Waitaha

Using these layers to estimate DRAFT 'Source' loads & compare to 'In-river' loads

Catchment	Area (ha)	'Source' loads (Nitrogen tonnes/yr)#	'In-river' loads (Nitrogen tonnes/yr)*	Existing Plan Ioad limit (N tonnes/yr)
Hurunui at Mandamus	105,754	228	55* (29-104)**	39
Hurunui at SH1 (Total)	252,395	1,886	713 * (270-1266)**	963

[#] Based on summing loads from draft GIS layers on previous slides

^{*} Based on rolling 6 year average annual load estimate as at 2016

^{**} Large range of annual load estimates for the period 2005 to 2016 - see next slide

Variability with 'In-river' load calculations

	DIN annual load estimates (tonnes/yr)
Hurunui SH1	
2005-06	516
2006-07	472
2007-08	520
2008-09	1266
2009-10	845
2010-11	948
2011-12	475
2012-13	698
2013-14	1451
2014-15	435
2015-16	270
Rolling 6 year average annual load estimate (T/yr)	713
Hurunui at u/s Mandamus	
2005-06	29
2006-07	32
2007-08	42
2008-09	62
2009-10	28
2010-11	42
2011-12	43
	66
2012-13	
2012-13 2013-14	105
2013-14	105

The differences between 'Source' loads and 'In-River' loads?

- 1. Methods (modelled vs measured [still estimated])
- 2. Attenuation uptake between sources & receiving environment
- 3. Time lags between source & in-river
- 4. Assumptions current versus past & future practices (eg where are we at compared to 'good management practice defined by MGM project?)

Next steps to improve?

- 1. Current land use patterns local ground-truthing & adjustment?
- 2. Local help with assumptions current versus past & future practices eg where are we at compared to 'good management practice' (MGM)?
- 3. Sharing & checking process is underway with AIC, HWP and NT
- 4. Others?

Questions?

