Your submission on the Proposal for the Canterbury Regional Pest Management Plan

Plan Objective 4: Page 35 Support: Progressive containment objective and selection of wilding conifer species to be contained.

It is important economically that Douglas fir and Radiata pine are not included on the containment species list as they are key contributors to the economic viability of the plantation forest industry in New Zealand. Any potential or actual spread threat from these two species from plantation forests which are for productivity reasons usually sited on lower altitude land (below 600m) and on soil types below class 6 or 7 can be readily contained with timely intervention and management. In addition we support the exclusion of Pinus Ponderosa from the containment species list as this species can be used as a boundary or exposed ridgeline buffer planting when more spread prone species are planted. Pinus Ponderosa is very wind firm, long lived and is not a prolific seed bearing species. Young seedlings are also palatable to grazing animals reducing the risk of potential spread.

Plan Rule 6.3.1 page 35: Support.

Plan Rule 6.3.2 page 36: Support in part. As managers of Hanmer forest RMF have on their North Eastern boundary areas of inaccessible legacy wilding conifers that border crown, Doc and private land which also contain legacy wilding conifers arising from erosion control plantings and spread from early spread prone Corsican pine and larch plantings which have or are being successively removed within RMF’s Hanmer forest.

If our neighbours decide to eradicate their wilding conifers along our boundary, obliging us to remove a 200m boundary this has the potential to result in accelerated soil erosion into our land area and result in a carbon liability cost.

Relief sought. Rather than any breach being an offence, if neighbours can agree to and provide an approved combined management plan to manage and replace wilding conifers with alternative low spread prone carbon or erosion control species along their adjoining boundaries, then this should be given recognition in the plan.
Page 37 Table 14: Support: Agree with broom, gorse and nasella tussock being included as pests for sustained control.

Rule 6.4.5 Page 43: Support

Rule 6.4.6 page 44: Support in part. In the Canterbury region plantation forest environment there are significant areas of broom and gorse infestation due to forest owners acquiring reverted farmland which was deemed unsuitable for agriculture due to the infestation. Forest owners undertake boundary control spraying with neighbours and during each successive forest rotation the gorse and broom under a closing forest canopy is suppressed and eventually dies. However at harvest the longevity of the seed enables a new crop of broom/gorse to germinate, this can be chemically controlled during the tree re-estabishment phase but it is not economically or environmentally practicable to continue to spray patches of gorse and broom within the forest after the 3 year re-estabishment phase. Gorse and broom is suppressed and dies out after canopy closure occurs (which is around 10–12 years after planting). This rule as it currently stands would put the majority of existing Canterbury plantation forestry in breach of the rule.

Relief sought: Exempt gorse and broom infestations within plantation forests (but not including boundaries with neighbours) from this rule.


Plan Rule 6.4.13 page 53: Support

Plan Rule 6.4.14 Page 54: Support in part: Comments are the same as that for rule 6.4.6 Relief sought: Exempt gorse and broom infestations within plantation forests (but not including boundaries with neighbours) from this rule.

Plan Rule 6.4.15 Page 54: Support in part: Comments are the same as that for rule 6.4.6 Relief sought: Exempt gorse and broom infestations within plantation forests (but not including boundaries with neighbours) from this rule.

Plan Objective 15 Page 55: Support

Plan Rule 6.4.16 Page 56: Support

Plan Rule 6.4.17 Page 56: Oppose in part. Compliance with this rule is very difficult to achieve for the entire area of a plantation forest, due to accessibility and ability to detect every plant. Nasella tussock removal is feasible on forest boundaries with neighbours and internal access roads/tracks, but 100% removal is not practicable within the forest. As a forest canopy closes tussock plants are suppressed, seeding is reduced and plants may die due to lack of light.

Relief sort is to require plantation forest owners to control nasella tussock on their boundaries and internal access/roads/tracks only.