BEFORE THE CANTERBURY REGIONAL COUNCIL

In the matter of	The Resource Management Act 1991
Between	
	CANTERBURY REGIONAL COUNCIL
	Consent Authority
And	
	IRRICON RESOURCE SOLUTIONS LIMITED
	PYE PARTERNHIP, SOUTH STREAM, GRANTLEA & CLOVERDENE DAIRIES, AND HIGHFIELD FARM HOLDINGS
	ME MULLIGAN
	I KERSE
	TURLEY FARMS LIMITED
	Submitters

EVIDENCE OF NICOLE IRENE PHILLIPS FOR HEARING TWO (FARMING RULES)

INTRODUCTION

- 1. My full name is Nicole Irene Phillips
- 2. I graduated from Lincoln University in 2002 with a Bachelor of Science, with an environmental monitoring, management and soils science emphasis.
- 3. I achieved a certificate of completion from Massey University in 2010 for satisfying the course requirements for the Certificate in Sustainable Nutrient Management in New Zealand and followed this in 2011 with a certificate of completion for the Advanced Sustainable Nutrient Management– these are essentially the 'OVERSEER®' qualifications.
- 4. Having obtained the required OVERSEER [®] qualifications as outlined above in 2011, I have spent the last 12 months completing OVERSEER [®] modelling and auditing OVERSEER [®] for clients throughout Canterbury and have a good understanding of OVERSEER [®] v6.0, using this modelling tool on a daily basis.

SCOPE OF EVIDENCE

- 5. My evidence covers the following topics:
 - a. OVERSEER [®] v6.0 modelling farm scenarios where issues were apparent with the use of OVERSEER [®]
 - b. The definition of "stock unit".

OVERSEER ® V6.0 MODELLING

- 6. OVERSEER® is an agricultural management tool which assists farmers and their advisers to assess nutrient use and movements within a farm to identify possible environmental effects (and to optimise farming outcomes). The computer model calculates and estimates the nutrient flows in a productive farming system and identifies risk for environmental impacts through nutrient loss, including both run off and leaching.
- 7. The model is now in widespread use throughout New Zealand.
- 8. There are 3 main assumptions underpinning the use of OVERSEER [®] as a modelling tool. They are:
 - a. <u>Annual Average</u> The model uses annual average inputs (e.g averaged over a number of years) and produces annual average outputs.
 - b. <u>Near equilibrium conditions</u> Model assumes that the farm is at a state where there is minimal change each year.
 - c. <u>Actual and reasonable inputs</u> Also assumes Best Management Practices.
- OVERSEER [®] uses animal stocking rate and productivity to estimate animal requirements (MJME) which is then in turn used to estimate pasture production. <u>It is an animal driven</u> <u>model.</u>
- 10. Since August 2012, I have audited or prepared over 100 OVERSEER [®] files in my role as a Consultant, generally to determine if the particular application for resource consent is a 'change' in land use as defined in the pLWRP. This has given me a good understanding of the complexity of the input data required in OVERSEER [®] v6.0 and also how sensitive the model is to particular input data.
- 11. The following examples have been selected to show the complexity of OVERSEER [®] as a modelling tool and also the constant changes to outputs from the model as maintenance releases are required to the engine driving the model due to reported problems with the

model operation, as well as the difficulties and complexity with using OVERSEER [®] as a limit setting tool within a consenting framework.

- 12.
- 13. It is not debated that OVERSEER [®] as a tool to compare/assess the effects of changes in a farming operation is useful but the constant updates to the model ensure that the outputs generated on any given day may not be comparable to outputs generated on another day due to changes in the model operation.

Farm 1 – Increase in annual volume and cow numbers

- 14. I was requested to audit files for an applicant that received a request for further information, to consider if their application increase their annual volume to ensure greater reliability of supply of irrigation water and to increase cow numbers triggered the requirement for land use consent.
- 15. The applicant began the conversion process to dairy in mid 2012 and commenced milking in August 2012.
- 16. Prior to this the property was a dairy grazing and cropping farm.
- 17. I received three OVERSEER [®] files from the applicants Fertiliser Representative; being previous, current and proposed.
- 18. The definition of 'change' in the pLWRP stated that the baseline to determine if a proposed activity was an increase in nitrogen lost to water was from 1 July 2011to 30 June 2013. This was the sole reason why an OVERSEER [®] nutrient budget was completed for the previous land use.
- 19. The outputs generated by OVERSEER [®] on the **15th March** based on the above information are detailed below:

OVERSEER ® v6.0.2	Previous	Current	Proposed
Nitrogen lost to water	32	40	37
kg/ha/yr			
Total N losses kg/farm	7006	8820	8226

- 20. A Nitrogen loss report was provided to ECAN on the 15th March along with the OVERSEER [®] xml files to audit. XML files are the electronic files of the OVERSEER [®] modelling.
- 21. An email was received from ECAN on the 19th March, indicating that the reports from the OVERSEER [®] v6.0.2 files supplied on the 15th March were unable to be generated due to errors.
- 22. An email received from Agresearch on Monday 18th March indicated that a maintenance release of OVERSEER [®] had been made to the internet version on the 17th March to address known errors and changes to the engine system of OVERSEER [®].
- 23. The OVERSEER [®] files for the current and proposed files were amended on the 19th March based on the error messages that were ensuring that the output reports could not be generated. No other changes were made to the files, other than those changes that were required to remove the error messages that were stopping the generation of the output reports. These are as follows:
 - a. Changes made: Current file checked the final harvest box in previous year kale crop, removed milk shed feeding in May

- b. Proposed file removed milk shed feeding in May
- 24. The outputs generated by OVERSEER [®] v6.0.3 on the **19th March** after the amendments to the current and proposed files are detailed below:

OVERSEER ® v6.0.3	Previous	Current	Proposed
Nitrogen lost to water	31	36	31
kg/ha/yr			
Total N losses kg/farm	6892	7857	6897

- 25. As can be seen in the tables above due to the maintenance release on the 17th March the outputs generated from OVERSEER [®] v6.0.3 changed for all three scenarios. This included the previous scenario when no changes were made to the input data.
- 26. Whilst OVERSEER [®] version 6 is still a relatively new system, it will require on-going maintenance releases to address issues with the engine of the model. This in turn creates changes to the outputs. If nitrogen limits are applied to resource consent as a condition of consent, the constant upgrading of OVERSEER [®], and consequently the outputs, means that a "limit" calculated on any given day and time may bear no resemblance to that calculated tomorrow, therefore it should not be used at this stage to set nutrient loss limits on resource consents.
- 27. I agree with the s42a report that states that there is an opportunity to 'step back from OVERSEER [®] in the interim period to enable it to be developed more fully and gain the required confidence' (page 73).

Farm 2 – Dairy Conversion

- 28. In March I was asked to audit two OVERSEER [®] files for an applicant in Southland that was proceeding to a council hearing after an application to convert to dairying was notified.
- 29. My brief was to audit the files for consistency and accuracy.
- 30. The modelling scenarios were completed by 2 different consultants for the applicant.
- 31. The following outputs were generated in the initial modelling provided to me:

OVERSEER ® v6.0.2	Current	Proposed
Nitrogen lost to water	48	33
kg/ha/yr		

- 32. After auditing the files, I noticed that there were some fundamental differences in several of the inputs between the files, especially relating to soil profile, climate and irrigation method, and the method in which stock numbers were entered.
- 33. This in effect created two files that were not comparing the same farm, although the applicant's consultants were both modelling <u>their own opinions</u> of the applicant's farm.
- 34. I was asked to amend the files to ensure consistency and accuracy of the files for the hearing process. I completed this and the outputs changed to the following:

OVERSEER ® v6.0.2	Current	Proposed
Nitrogen lost to water	35	38
kg/ha/yr		

- 35. As you can see, the amendments dramatically changed the outputs and also showed that in the proposed scenario was losing more Nitrogen to water than the current scenario, a complete contrast to results of the original modelling.
- 36. This audit process significantly changed the applicant's evidence that was needed to be presented at their hearing.
- 37. Even with two qualified OVERSEER [®] users completing the modelling, the inputs required in OVERSEER [®] v6.0 are so complex and different techniques or understanding of the input data required can lead to very different outputs.
- 38. It also shows that a National and a Canterbury Regional Protocol needs to be developed prior to OVERSEER [®] being used as a nutrient limit setting tool in Resource Consents, to ensure that the same input data is being used across Canterbury.

Farm 3 – Pahau Flats Dairy Ltd (in support of Keri Johnston's evidence)

- 39. Pahau Flats Dairy Ltd are purchasing a 380ha irrigated property. A dairy conversion is proposed and also a conversion from borderdyke irrigation to primarily centre pivot spray irrigation.
- 40. Ms Johnston evidence has provided the background detail on this property.
- 41. Two OVERSEER [®] scenarios were required to be modeled; an existing scenario and then a proposed scenario. The existing scenario was a primarily borderdyke irrigated sheep, beef and grain crop property and the proposed scenario was a dairy farm with a spray irrigation conversion.
- 42. Within OVERSEER[®] irrigation application rates are entered on a monthly basis. The irrigation type e.g. borderdyke or centre pivot is selected, the month is selected and then the application rate for that month is entered.
- 43. OVERSEER [®] assumes best practice is adhered too when applying irrigation water.
- 44. The application rate per month for a borderdyke system when compared to a spray irrigation system will, in most instances, be very similar. The issue is that in a borderdyke system such as that at Pahau Dairy Flats Ltd, the monthly application rate is applied in approximately 2 applications/month (17 day return period) whereas the application rate for a centre pivot system is applied evenly across the whole month.
- 45. The application rate at Pahau Flats Dairy Ltd is 150mm/month. This equates to 5mm/day (applied at a rate of 15mm every three days) in a centre pivot system, whereas for a borderdyke system, it is still 5mm/day, but applied at a rate of 75mm once every 17 days. By only entering application rates on a monthly basis in Overseer, the application rate for both systems is the same, at 150mm per month.
- 46. The drainage rates under the 2 systems should be significantly different due to the very different volumes of water per application.
- 47. The PAW_{30} of the Pahau soil type is 62mm. Applying 15mm every three days under a centre pivot system ensures that the PAW_{30} is not exceeded and the water application is even and uniformly distributed.

- 48. Under the borderdyke system the application rate is 75mm per application every 17 days then the PAW₃₀ of the Pahau soil is exceeded by 13mm every application and therefore significantly more drainage over the course of a year should be occurring than that under centre pivot irrigation.
- 49. The drainage volumes modelled by OVERSEER [®] for the two different systems are shown below. It is noted that OVERSEER only models a difference in drainage of 59mm/year between the two irrigation systems

Drainage volumes Pahau Soils	Existing – borderdyke	Proposed-spray irrigation
Drainage mm/yr	263	204
Outwash mm/yr	63	

- 50. ECan report R10/127 'Estimating nitrate-nitrogen leaching rates under rural land uses in Canterbury' clearly shows that the estimated long term annual average drainage rates under borderdyked land is significantly more (at least four times as much) as under spray irrigation (Pahau medium soil, spray irrigation drainage = 150mm, borderdyke irrigation drainage = 610).
- 51. OVERSEER [®] does not model the difference in the drainage as would be expected when converting from borderdyke irrigation to spray due to the ability to only input irrigation application rates per month.

STOCK UNIT DEFINITION

- 52. It is noted that the s42a report for the farming rules has recommended significant changes to the definition of 'change' (page 82).
- 53. The most significant recommendation is the removal of OVERSEER [®] modelling to determine a change and the introduction of a stock unit and arable yield component.
- 54. Whilst these changes are agreed with in principle, there is a need for the pLWRP rules to define the value that will be attributed to each stock type, in order that all applicants and the Regional Council are using the same figures for stock type to calculate whether there is an increase of greater than 10%.
- 55. The basic stock unit is one breeding ewe that weighs 55kg and produces one lamb, this assumes that this ewe consumes 550 kg dry matter over a year (this includes the feed her lamb consumes up until weaning.
- 56. A beef breeding cow is then given a value of 6.0 stock units assuming she consumes 6 times more feed that the ewe.
- 57. Different organisations and consultants have adopted different ways to measure stock units, so it is imperative that the value attributed to each stock type, from lambs to milking and dry dairy cows is defined in the pLWRP.

Nicole Phillips

Whin

Dated: 2 April 2013

Annexure 1 – Farm 1 – OVERSEER ® Nitrogen output reports

Nutrient Budget Nitro		ogen	Phosp	Comments		Summary	Nitrogen overview		
Phosphorus overv	iew	Gree	nhouse <u>(</u>	jases	Energy	Fo	otprint units	Footprint	product
Pasture production Ot			alues	Full pa	rameter rep	ort			
Block name		Тс	otal N los	t NI	ost to water	N ir	n drainage *	N surplus	Added N **
		kg	ı N/yr	kg	N/ha/yr	ppr	n	kg N/ha/yr	kg N/ha/yr
Wheat		41	12	12		5		129	264
Oats		10	1017 27		27		3	230	260
Clover		10	109 5		5			452	205
Peas		35	350		17			-29	54
Kale		14	1451 4		44		5	312	228
Pasture		36	3652 53		53 17		8	284	138
Other sources		16	6						
Whole farm		70	7006 32						
Less N removed in wetland		0							
Farm output		70	006	32					

Previous Scenario 19th March

Nutrient Budget Nitrogen		jen	Phosphorus		Comments		Summary	Nitrogen	overview
Phosphorus overvi	ew	Green	house gas	es	Energy	Fo	otprint units	Footprin	t product
Pasture production		ther va	lues F	ull pa	rameter rep	ort			
Block name		Tot	al N lost	NI	ost to water	Ni	n drainage *	N surplus	Added N **
		kg l	N/yr	kg	N/ha/yr	ррі	m	kg N/ha/yr	kg N/ha/yr
Wheat		41	1	12		5.6		129	264
Oats		976	976 2		26		.1	228	260
Clover	Clover		128 6		6		ļ	450	205
Peas	Peas		391 2		20			-30	54
Kale	Kale		1398 4		42		.4	310	228
Pasture		357	3572 52			20.	.7	284	138
Other sources		16							
Whole farm		689	92	31					
Less N removed wetland	d in	0							
Farm output		689	92	31					

Current scenario 15 th	March
-----------------------------------	-------

Nutrient Budget Nitroger			ogen	Phospho	rus	Comments		Summary	Nitrogen	overview
Phosphorus overview Greenhouse gases					ses	Energy	Fo	otprint units	Footprint	product
Effluent	luent Pasture production			Other	values	Full p	aram	eter report		
Block n	ame		То	tal N lost	N los	t to water	Ni	n drainage *	N surplus	Added N **
		kg	N/yr	kg N/	N/ha/yr		n	kg N/ha/yr	kg N/ha/yr	
Effluent		47	08	67		22	6	312	305	
Non Effluent		29	928 62		2 2			261	249	
Grass Seed		24	244		5			307	171	
Wheat		53	53		4			134	264	
Kale		70	705		39		1	190	241	
Canola	a		10	108 5		5 2			150	280
Other s	ources		75	i -						
Whole farm		88	8820 4							
Less N removed in wetland		0								
Farm o	utput		88	20	40					

Current Scenario 19th March

Nutrient Budget Nitrogen		en	Phosphoru	s	Comments		Summary	Nitro	ogen over	view	
Phosphorus overv	; 1 [Energy	Fo	otprint units	Foot	Footprint product					
Effluent Pasture production			Other va	lues	Full pa	aram	eter report				
Block name		Total	N lost	N lost	to water	Nin	n drainage *	N surplu	us A	dded N **	
		kg N	/yr	kg N/h	l/ha/yr p		n	kg N/ha/	/yr k	kg N/ha/yr	
Effluent		3962	2	57		22.	6	311	3	304	
Non Effluent		2480	2480 53		2		1	260	2	249	
Grass Seed		339	339 7		7			307	1	171	
Wheat		60	60		5			126	2	264	
Kale		841	841 47		47		8	216	2	241	
Canola		100	00 5		2.2		2.2 150		2	280	
Other sources		74									
Whole farm		7857	7857 3								
Less N removed in wetland		0									
Farm output		7857	7	36							

Proposed scenario 15th March

Nutrient Budget	Nitrogen	en Phosphorus Greenhouse gases		Comments Energy Fo		Summary	Nitroge	Nitrogen overview	
Phosphorus overv	iew Gree					otprint units	Footprir	nt product	
Effluent Pasture produc		tion Other values		ues Full parameter report					
Block name	T	otal N lost	N los	st to water	Ni	n drainage *	N surplus	Added N **	
		kg N/yr		kg N/ha/yr		m	kg N/ha/yr	kg N/ha/yr	
Effluent		3104 4		44		.9	208	200	
Non Effluent		4697		43		.4	191	184	
Barley	3	330		9			73	165	
Other sources	9	5							
Whole farm	8	226	37						
Less N remove wetland	d in 0								
Farm output	8	226	37						

Proposed scenario 19th March

Nutrient Budg	utrient Budget Nitroger		Phosphorus		Comments S		Summary	Nitrogen	overview
Phosphorus o	Phosphorus overview Greenhouse ga			es	es Energy Footprint units			Footprint product	
Effluent P	asture pro	oduction	Other	value	s Full pa	aramet	er report		
Block name	е		tal N lost		ost to water	N in c	drainage *	N surplus	Added N **
		kg	N/yr	kg	N/ha/yr	ppm		kg N/ha/yr	kg N/ha/yr
Effluent		25	78	37		14.7		207	199
Non Effluer	Non Effluent 3893		393 35			14.2		187	184
Barley	ley 314		14 9		9 :			72	165
Other sour	ces	94	Ļ						
Whole farm	n	68	79	31					
Less N ren wetland	moved in	0							
Farm outpu	ut	68	79	31					

٦

Annexure 2: Pahau Flats Dairy Ltd – other values output reports

Existing Sheep and beef bord	lerd	vke	farm
------------------------------	------	-----	------

Nutrient budget	Nitrogen	Phosp	norus	Graph -	N pools	Graph - changes in N pools
Comments N	laintenance nu	itrients	Relat	ive yield	Other v	alues
Other outputs for	Borderdyke Pa	ahau				
This report shows	s calculated ou	tput value	s that ar	e not repor	ted elsewi	here.
Parameter				Value		
Relative yield (from soil tests	& fertilise	r)	93		
Pasture utilisa	tion (%)			70		
Total estimate	d irrigation (mr	m/yr)		537		
Total AET (mm	ı/yr)			861		
Total drainage	(mm/yr)			263		
Total runoff (m	m/yr)			0		
Total irrigation	out wash (mm	ı/yr)		63		
Field capacity	(mm to 60cm)			182		
Wilting point (r	nm to 60 cm)			88		
AWC (mm to 6	0 cm)			94		
\$ on fertiliser p	er ha			\$0.00		
Artifical wetlan	d: Efficiency (%))		0		
Artifical wetlan	d: N removed (kg N/ha/yr)	0		

Existing scenario Nitrogen output report

Nutrient budget Nitrogen	Phosphoru	is Graph - N	pools Graph	- changes in N p	pools
Comments Maintenance	nutrients R	lelative yield	Other values		
Block name	Total N lost kg N/yr	N lost to water kg N/ha/yr	N in drainage * ppm	N surplus kg N/ha/yr	Added N ** kg N/ha/yr
Borderdyke Pahau	4123	27	6.9	151	0
Pivot pahau	668	17	8.2	201	83
Hardhose Gun pahau	144	14	6.4	150	0
Lucerne irr BD	216	17	3.0	533	0
Barley spring irr gun	2143	43	20.6	115	76
Kale irr BD - waimak	491	25	10.1	302	107
Dryland waimak	402	10	7.5	73	0
Dryland Pahau	193	6	5.8	73	0
Borderdyke Waimak	602	35	9.7	151	0
Other sources	12				
Whole farm	8993	23			
Less N removed in wetland	0				
Farm output	8993	23			

Proposed dairy and spray conversion

Comments M	aintenance nut	trients	Relat	ive yield	Other	values
Other outputs for I	Milking platforn	n pahau				
This report shows	s calculated out	put value:	s that ar	e not repor	ted elsew	here
Parameter				Value		
Relative yield (from soil tests &	& fertiliser)	98		
Pasture utilisat	tion (%)			85		
Total estimate	d irrigation (mm	l/yr)		415		
Total AET (mm	/yr)			861		
Total drainage	(mm/yr)			204		
Total runoff (m	m/yr)			0		
Field capacity (mm to 60cm)				182		
Wilting point (mm to 60 cm)				88		
AWC (mm to 6	0 cm)			94		
\$ on fertiliser p	er ha			\$0.00		
Artifical wetlan	d: Efficiency (%)			0		
Artifical wetland	d: N removed (k	g N/ha/yr)	0		

Proposed dairy conversion Nitrogen output report

Nutrient budget Nitroger Comments Maintenance		· · ·		Graph - N	pools	Graph - changes in N pools			
				ive yield	Other values				
Block name		Total N lost	NI	ost to water	N in drai	nage *	N surplus	Added N **	
		kg N/yr	kg l	N/ha/yr	ppm		kg N/ha/yr	kg N/ha/yr	
Milking platform	pahau	5606	35		17.2		264	240	
Effluent area pa	hau	3721	37		18.2		322	299	
Milking Platform	Waimak	5731	44		21.0		257	240	
Other sources		287							
Whole farm		15345	39						
Less N remove wetland	d in	0							
Farm output		15345	39						